10. Problem sheet for Set Theory, Winter 2012

Prof. Dr. Peter Koepke, Dr. Philipp Schlicht

Mathematisches Institut, Universität Bonn, 10.12.2012

Problem 35. Suppose κ is an infinite cardinal. Show that for every $\alpha<\kappa^{+}$, there is a sequence $\left(X_{n} \mid n \in \omega\right)$ such that $\alpha=\bigcup_{n \in \omega} X_{n}$ and $\operatorname{otp}\left(X_{n}\right) \leq \kappa^{n}$ (in ordinal exponentiation).

Problem 36. If $(X,<)$ is a linearly ordered set, the order topology on X is defined as the topology with basic open sets (a, b), and $[a, b)$ if $a=\min (X),(a, b]$ if $b=$ $\max (X)$, for $a, b \in X$. A topological space X is compact if every open cover $\left(U_{\alpha} \mid \alpha<\gamma\right)$ of X (i.e. each U_{α} is open and $\left.X=\bigcup_{\alpha<\gamma} U_{\alpha}\right)$ has a finite subcover.

Show that an ordinal α is compact in its order topology if and only if it is a successor or 0 .

Problem 37. Suppose κ is an infinite regular cardinal. We say that subsets A, B of κ with $\operatorname{card}(A)=\operatorname{card}(B)=\kappa$ are almost disjoint if $\operatorname{card}(A \cap B)<\kappa$. Suppose $\left(A_{\alpha} \mid \alpha<\gamma\right)$ is a sequence of pairwise almost disjoint subsets of κ with $\gamma \leq \kappa$. Show that there is a set $A \subseteq \kappa$ (of cardinality κ) that is almost disjoint from A_{α} for all $\alpha<\gamma$.

Problem 38. Suppose κ is an infinite cardinal with $2^{<\kappa}=\kappa$. A family $\left(A_{\alpha} \mid\right.$ $\alpha<\gamma$) of subsets of κ with $\operatorname{card}\left(A_{\alpha}\right)=\kappa$ for all α is called almost disjoint if the sets A_{α} are pairwise almost disjoint. Show that there is an almost disjoint family of cardinality 2^{κ} of subsets of κ, by defining a function $f:{ }^{\kappa} 2 \rightarrow{ }^{\kappa} 2$ such that the values of $f(x)$ code initial segments of x.

There are 6 points for each problem. Please hand in your solutions on Monday, December 17 before the lecture.

